Graphical editor for road network for autonomous traffic simulation
Edytor sieci drogowej na potrzeby symulacji ruchu autonomicznego *
Author: Paweł Lisiecki
Mechanik nr 11/2024 - CAD/CAM/CAE
ABSTRACT: This paper presents the issue of designing road networks for autonomous traffic simulation. Existing autonomous traffic engines are discussed, and their capabilities are compared with the requirements for high-immersion vehicle simulators. The extension to the Hermes editor for generating complex road network geometries is presented, along with tools to improve the work of road network designers. Finally, the advantages and disadvantages are outlined, and development possibilities for the designed solution are indicated.
KEYWORDS: real vehicle simulators, SUMO, OpenSteetMap, road networks, autonomous traffic simulation, traffic signal control
STRESZCZENIE: Artykuł przedstawia problematykę tworzenia sieci drogowych na potrzeby symulacji ruchu autonomicznego. Opisano istniejące silniki ruchu autonomicznego i zestawiono ich możliwości z wymaganiami stawianymi symulatorom rzeczywistych pojazdów o wysokim poziomie immersyjności. Przedstawiono rozszerzenie do edytora Hermes pozwalające na generowanie sieci drogowej o złożonej geometrii, z narzędziami usprawniającymi pracę projektanta sieci drogowej. Finalnie przedstawiono wady i zalety, a także wskazano możliwości rozwoju zaprojektowanego rozwiązania.
SŁOWA KLUCZOWE: symulatory rzeczywistych pojazdów, SUMO, OpenSteetMap, sieci drogowe, symulacja ruchu autonomicznego, sterowanie sygnalizacją świetlną
BIBLIOGRAFIA / BIBLIOGRAPHY:
[1] Alonso F., Faus M., Riera J.V., Fernandez-Marin M., Useche S.A. “Effectiveness of driving simulators for drivers’ training: a systematic review”. Applied Sciences. 13, 9 (2023): 5266, https://doi.org/10.3390/app13095266.
[2] Soares S., Lobo A., Ferreira S., Cunha L., Couto A. “Takeover performance evaluation using driving simulation: a systematic review and meta-analysis”. European Transport Research Review. 13, 47 (2021): 1–18, https://doi. org/10.1186/s12544-021-00505-2.
[3] Yadav A.K., Khanuja R.K., Velaga N.R. “Gender differences in driving control of young alcohol-impaired drivers”. Drug Alcohol Depend. 213 (2020): 108075, https://doi.org/10.1016/j.drugalcdep.2020.108075.
[4] Čulík K., Kalašová A., Štefancová V. “Evaluation of driver’s reaction time measured in driving simulator”. Sensors. 22, 9 (2022): 3542, https://doi.org/10.3390/s22093542.
[5] Lisiecki P., Szłapczyński M., Chołodowicz E. „Automatyczna generacja wirtualnych elementów infrastruktury kolejowej”. Pomiary Automatyka Robotyka. 28, 2 (2024): 119–124, https://doi.org/10.14313/PAR_252/119.
[6] Zhuoxiao Meng, Xiaorui Du, Sottovia P. et al. “Topology-Preserving Simplification of OpenStreetMap Network Data for Large-scale Simulation in SUMO”. SUMO Conference Proceedings. (2022): 181–197.
[7] Muktadir G.M., Jawad A., Paranjape I., Whitehead J., Shepelev A. “Procedural generation of high-definition road networks for autonomous vehicle testing and traffic simulations”. SAE International Journal of Connected and Automated Vehicles, 6, 12-06-01–0007 (2022): 99–120, https://doi.org/10.4271/12-06-01-0007.
[8] Tecław M., Szłapczyński M. „Generacja terenu przestrzennego za pomocą edytora Hermes”. Pomiary Automatyka Robotyka. 28, 2 (2024): 113–118, https://doi. org/10.14313/PAR_252/113.
[9] Nguyen J., Powers S.T., Urquhart N., Farrenkopf T., Guckert M. “An overview of agent-based traffic simulators”. Transp Res Interdiscip Perspect. 12 (2021): 100486, https://doi. org/10.1016/j.trip.2021.100486.
[10] Tabet F., Pentyala S., Patel B.H. et al. “Osmrunner: A system for exploring and fixing OSM connectivity”. 22nd IEEE International Conference on Mobile Data Management (MDM). Toronto, Canada. (2021): 193–200, https://doi. org/10.1109/MDM52706.2021.00039.
DOI: https://doi.org/10.17814/mechanik.2024.11.22
* Artykuł recenzowany