Mechanik
PL FB kontakt

29.04.2024

Home Page Kwiecień 2024

The contents of the monthly No. 04/2024

Druk 3D

6 Influence of size on the compressive properties of cellular structures manufactured by additive technologies Wpływ rozmiaru na właściwości ściskające struktur komórkowych wytwarzanych technologiami przyrostowymi * - Mateusz Rudnik

ABSTRACT: This article is a continuation of research on hexagonal cell structures. Previous research has dealt with cell structures in normalized models, where it was shown that cell structures should be studied from a single cell to a suitably generated iterative model based on recursive formulas. The aim of this paper was to compare manufactured cell structures with an appropriately defined formula. Printed models of the hexagonal structure subjected to compression showed that, in the case of the Polylactic Acid Blue material, as the size of the side length of the hexagonal cells increased, the quality of the generated diagrams also increased, which informed the undesired effects of the compressive force in the tests. In the case of cells manufactured from the PA2200 material, it was noted that the maximum force acting on the cell structure decreased with increasing cell side length, however, no undesirable situations occurred during testing in contrast to structures manufactured from Polylactic Acid base materials. In the case of Polylactic Acid materials, special attention had to be paid to the Polylactic Acid Gray material. The models were printed with the same parameters, from the same Stereolitography language file, had a slightly higher mass and were subjected to the same compression test, yet showed significant differences in the tests carried out compared to the other models.

KEYWORDS: PLA, PA2200, FFF, SLS, cell structures, additive manufacturing

STRESZCZENIE: Artykuł jest kontynuacją badań dotyczących struktur komórkowych heksagonalnych. Poprzednie badania dotyczyły struktur komórkowych w modelach znormalizowanych. Wykazano, że struktury komórkowe należy badać od pojedynczej komórki do odpowiednio wygenerowanego modelu iteracyjnego opartego na wzorach rekurencyjnych. Celem pracy było porównanie wytworzonych struktur komórkowych o odpowiednio zdefiniowanym wzorze. Wydrukowane modele struktury heksagonalnej poddanej ściskaniu wykazały, że w przypadku materiału Polylactic Acid Blue wraz ze wzrostem długości boku komórek heksagonalnych wzrastała także jakość generowanych diagramów, co informowało o niepożądanych efektach działania siły ściskającej. W przypadku struktur komórkowych wykonanych z materiału PA2200 zauważono, że maksymalna siła działająca na strukturę komórkową zmniejszała się wraz ze wzrostem długości boku struktury komórkowej, jednakże podczas badań nie wystąpiły żadne niepożądane sytuacje w porównaniu ze strukturami wytwarzanymi z materiałów na bazie kwasu polimlekowego. W przypadku materiałów z polikwasu mlekowego szczególną uwagę należało zwrócić na materiał z szarego kwasu polimlekowego. Modele zostały wydrukowane z tymi samymi parametrami, z tego samego pliku, który został zapisany w języku stereolitograficznym, a jednak miały nieco większą masę i zostały poddane temu samemu testowi ściskania, a mimo to wykazały istotne różnice w przeprowadzonych testach w porównaniu z pozostałymi modelami.

SŁOWA KLUCZOWE: PLA, PA2200, FFF, SLS, struktury komórkowe, wytwarzanie przyrostowe

DOI: https://doi.org/10.17814/mechanik.2024.4.6

 

* Artykuł recenzowany

39 Utilisation of first Polish multifunctional 3D bioprinter BioCloner Desktop for printing hydrogel cell scaffolds in controlled clean environment – case study Wykorzystanie pierwszej polskiej wielofunkcyjnej biodrukarki 3D BioCloner Desktop do druku hydrożelowych rusztowań komórkowych w kontrolowanych warunkach o podwyższonej czystości – studium przypadku * - Jakub Knap-Kowalski, Hubert Twardziak, Jakub Matulski, Ewa Bednarczyk, Szymon Sikora, Roman Grygoruk, Maciej Gołaszewski

ABSTRACT: In this article novel technological solutions for applying additive manufacturing technologies in the biomedical and biotechnological industry are showcased. The BioCloner Desktop (referred to as ‘Desktop’) is a miniaturised version of an industrial printer developed as part of a project regarding utilising additive manufacturing technologies for manufacturing of bioresorbable implants. In the years 2016–2019, the project was financed from EU resources (project number POIR.01.01.01-00-0044/16-00). During this project, industrial-sized solutions dedicated for medical and pharmaceutical applications were developed.
The Desktop was developed as a way of expanding the possibilities of research and development in a standard biomedical laboratory. The size of the described printer allows it to be placed inside a laminar flow cabinet.
The Desktop is a device which meets the growing need for multipurpose compact desktop bioprinters dedicated for research and development applications. Currently, commercially available laboratory-scale machines lack an open architecture, which puts boundaries on research. Miniaturisation of the BioCloner bioprinter did not sacrifice its key feature of supporting multitool print and convenience of construction for further specialisation.
The BioCloner project, besides bioprinters, also includes dedicated slicing and printer control software. Thanks to its multiplatform compatibility, it is possible to easily increase the scale of production directly after the research process.
The Desktop is equipped with printheads that facilitate multiple methods of 3D printing. From the most popular fused filament fabrication (FFF) to the versatile fused granulate fabrication (FGF) to highly specialised printheads for bioprinting, designed to dispense hydrogels via pressure extrusion. The printheads have also additional features required in the bioprinting process, such as UV crosslinking lights and temperature control (heating as well as cooling).
In this article, key features of both the BioCloner Desktop bioprinter and the dedicated BioCloner 3D slicing-operating software are outlined. Its second part is a report on the bioprinter’s usage in the Biomedical Engineering Laboratory, named after E.J. Brzeziński, located at Faculty of Mechanical and Industrial Engineering of Warsaw University of Technology. During the study, hydrogel cell scaffolds for culturing WEHI-164 mouse fibroblasts were produced. The structures were obtained using a gelatin methacrylate (GelMa)-based commercially available bioink deposited directly into a cell culture vessel. The structures were fully crosslinked immediately after printing.
All printed scaffolds supported cell proliferation. There were no observed signs of contamination, and the conducted field tests confirmed the assumed functionality of the BioCloner Desktop bioprinter.

KEYWORDS: 3D printing, 3D bioprinting, cell scaffolds, tissue engineering, additive manufacturing

STRESZCZENIE: W artykule przedstawiono nowatorskie rozwiązania techniczne pozwalające na wykorzystanie technologii addytywnego wytwarzania w branżach biomedycznej i biotechnologicznej. BioCloner Desktop (dalej: „Desktop”) jest zminiaturyzowanym rozwiązaniem opracowanym w ramach trwającego od 2016 r. projektu BioCloner, mającego na celu wdrożenie technik przyrostowych w procesie produkcji implantów wchłanialnych. Projekt ten w latach 2016–2019 był finansowany ze środków UE (projekt POIR.01.01.01-00-0044/16-00 – Pierwsza polska biodrukarka dedykowana do implantów wchłanialnych – BioCloner). W ramach projektu BioCloner opracowano rozwiązania wielkogabarytowe przeznaczone do zastosowania w branży medycznej i farmaceutycznej.
Desktop został opracowany z myślą o poszerzeniu możliwości prac badawczo-rozwojowych w typowym laboratorium biomedycznym. Wymiary drukarki BioCloner Desktop pozwalają na pracę w warunkach podwyższonej czystości oraz wewnątrz komory laminarnej. Desktop stanowi odpowiedź na rosnące wymagania stawiane przed kompaktowymi drukarkami nabiurkowymi wykorzystywanymi w pracach badawczo-rozwojowych. Dostępne na rynku urządzenia przeznaczone do biodruku w skali laboratoryjnej nie posiadają otwartej architektury, przez co ograniczają zakres prowadzonych prac badawczo-rozwojowych. Przy zmniejszeniu biodrukarki 3D zachowano wyróżniające BioCloner cechy – wsparcie druku wielogłowicowego oraz otwartość konstrukcji, która pozwala na rozwijanie kompatybilnych głowic i akcesoriów wspierających proces biodrukowania 3D. Projekt BioCloner poza wymienionymi biodrukarkami 3D obejmuje również dedykowane oprogramowanie sterujące zawierające kluczowe z perspektywy biodruku funkcjonalności. Dzięki międzyplatformowej kompatybilności sterowników możliwe będzie szybkie zwiększenie skali produkcji po zakończeniu prac badawczo-rozwojowych.
Desktop jest wyposażony w głowice wspierające różne metody druku przestrzennego. Od najpopularniejszego druku termoplastycznym filamentem fused filament fabrication (FFF), poprzez druk wykorzystujący nadtopiony granulat fused granulate fabrication (FGF), po głowice ciśnieniowe opracowane specjalnie do wymagań stawianych przez biodruk. Przykładem tego są głowice przeznaczone do ekstruzji ciśnieniowej hydrożeli z wieloma dodatkowymi funkcjami, takimi jak sieciowanie UV oraz kontrola temperatury (zarówno grzanie, jak i chłodzenie).
Opisywana w artykule drukarka została przetestowana w Laboratorium Inżynierii Biomedycznej im. E.J. Brzezińskiego mieszczącym się na Wydziale Mechanicznym Technologicznym Politechniki Warszawskiej. Wytworzono w nim rusztowania do hodowli fibroblastów mysich
WEHI-164. Struktury zostały wydrukowane z hydrożelu bazującego na metakrylowanej żelatynie (GelMa), bezpośrednio w naczyniu przeznaczonym do dalszej inkubacji hodowli.
Wszystkie otrzymane struktury pozwalały na zagnieżdżenie się i proliferację rozważanych w badaniu komórek. Nie zaobserwowano oznak zakażenia w trakcie hodowli. Przeprowadzone testy potwierdzają zakładaną funkcjonalność biodrukarki Desktop.

SŁOWA KLUCZOWE: druk 3D, biodruk 3D, rusztowania komórkowe, inżynieria tkankowa, metody przyrostowe

DOI: https://doi.org/10.17814/mechanik.2024.4.8

 

* Artykuł recenzowany

Narzędzia

23 Nowy frez Sandvik Coromant: CoroMill® MS60 – uniwersalna głowica do frezowania czołowego i walcowo-czołowego (SANDVIK COROMANT)
24 Narzędzia do zrównoważonej obróbki. Narzędzia skrawające i zrównoważona produkcja (ISCAR)

Nowości wydawnicze

26 Inżynierskie upraszczanie Design For Assembly (DFA) w praktycznych przykładach (Michał Hałas)
26 Poradnik ślusarza. Tradycyjne i nowoczesne technologie (Jan Krzos)

Obrabiarki

16 Usługi cyfrowe, portal dla klientów oraz inteligentni asystenci ułatwiają dostosowywanie się do zmian (ARBURG)
30 TruLaser Cell 3000 – uniwersalna maszyna 2D/3D do cięcia, spawania i napawania laserowego (TRUMPF POLSKA)

Obróbka skrawaniem

34 The process of dynamic selection of metallic materials and their consolidation Proces dynamicznej selekcji materiałów metalicznych wraz z ich konsolidacją * - Paweł Bałon, Edward Rejman, Bartłomiej Kiełbasa, Robert Smusz, Andrzej Szęszoł, Mirosław Kloc

ABSTRACT: In the process of machining, e.g. machining, chips are created and recycled. In many cases, chip briquetting is a solution with many advantages: it reduces their volume by up to 50%, is more efficient in terms of their management and transport, enables the recovery of oils and coolants, and also generates low energy and volume losses during melting in the steelworks. Higher waste density, lower transport costs and reduced humidity levels increase the sales prices of metal briquettes. Moreover, the briquetted material is less susceptible to the influence of weather conditions – its oxidation is reduced. This results in an increase in the quality of the material in the molten phase. An additional advantage is the ability to easily load and place the briquettes directly in the melting furnace, which eliminates the need to remove residual machining coolants. In the article, the authors undertook research related to the consolidation of chips in order to obtain their moisture content below 3%.

KEYWORDS: pressing steel chips, pressing aluminum chips, briquetting, consolidation

STRESZCZENIE: W procesie obróbki ubytkowej, np. skrawaniem, powstają wióry, które poddaje się recyklingowi. W wielu przypadkach brykietowanie wiórów jest rozwiązaniem o wielu zaletach: redukuje ich objętość do 50%, jest bardziej wydajne pod względem ich zagospodarowania i transportu, umożliwia odzyskiwanie olejów płynów chłodzących, a także generuje niskie straty energetyczne i objętościowe podczas topienia w hucie. Większa gęstość odpadu, niższe koszty transportu oraz zmniejszenie poziomu wilgotności wpływają na wzrost cen sprzedażowych brykietu metalowego. Ponadto zbrykietowany materiał mniej poddaje się wpływowi warunków atmosferycznych – zmniejsza się jego utlenianie. Skutkuje to wzrostem jakości materiału w fazie stopionej. Dodatkową zaletą jest możliwość łatwego załadowania i umieszczenia brykietu bezpośrednio w piecu topielnym, co eliminuje konieczność przeprowadzania procesów usuwania pozostałości chłodziw obróbkowych. W artykule autorzy podjęli tematykę badawczą związaną z konsolidacją wiórów i uzyskali ich zawilgocenie poniżej 3%.

SŁOWA KLUCZOWE: prasowanie wiórów stalowych, prasowanie wiórów aluminiowych, brykietowanie, konsolidacja

DOI: https://doi.org/10.17814/mechanik.2024.4.7

 

* Artykuł recenzowany

Wydarzenia i aktualności

4 Panorama
18 Postęp w zakresie cyrkularności systemu tworzyw sztucznych – raport Plastics Europe
48 „Przemysłowa Wiosna”, która przejdzie do historii

Z działalności CIRP

22 Wewnętrzne podawanie chłodziwa w pilarkach tarczowych - Krzysztof Jemielniak

STRESZCZENIE:

Wewnętrzne podawanie chłodziwa pozwala na efektywne jego wykorzystanie, zwłaszcza w procesach, w których dostęp do strefy skrawania jest utrudniony. W artykule przedstawiono analizę zastosowania systemu wewnętrznego podawania chłodziwa w piłowaniu tarczowym.

* Artykuły recenzowane

Spis reklam

ARBURG 1
Forwell Precision Machinery 5
GF Machining Solutions IV okł
ISCAR I okł.
Oerlikon Balzers 15
Staleo.pl 38
Studer 33
Targi ITM INDUSTRY EUROPE, Poznań III okł.
Tungaloy 21
United Grinding Group 27
XYZ Machine Tools 28-29
Zrobotyzowany.pl 47
Home Page Kwiecień 2024

Mechanik no. 04/2024

Kwiecień 2024

Recommended Books

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession
Keke Zhang, Xinhao Liao

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession

Cambridge University Press

A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances...

Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications
Wit Grzesik

Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications

Elsevier

In 2017 Elsevier republished the book “Advanced Machining Processes of Metallic Materials: Theory,...

Hybrid Machining: Theory, Methods, and Case Studies
Xichun Luo Yi Qin

Hybrid Machining: Theory, Methods, and Case Studies

Elsevier

“Hybrid Machining: Theory, Methods, and Case Studies” covers the scientific fundamentals, techniques,...

Three-Dimensional Navier-Stokes Equations. Classical Theory
James C. Robinson, José L. Rodrigo, Witold Sadowski

Three-Dimensional Navier-Stokes Equations. Classical Theory

Cambridge University Press

A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier-Stokes...

Our partners