Mechanik
PL FB kontakt

03.05.2024

Home Page Maj-Czerwiec 2022 Numerical simulation of a cross-wedge rolling process in a mill with horizontally stacked rolls

Numerical simulation of a cross-wedge rolling process in a mill with horizontally stacked rolls

Symulacja numeryczna procesu walcowania poprzeczno-klinowego osi kolejowej w walcarce z poziomo ułożonymi walcami *

Author: Zbigniew Pater, Tomasz Bulzak, Janusz Tomczak

Mechanik nr 05/06/2022 - CAD/CAM/CAE

ABSTRACT: This paper presents simulations of the cross wedge rolling (CWR) process of a railway axle. It is assumed that the rolls are arranged horizontally, which should facilitate both the loading of the charge and the unloading of the rolled product. Simulations were performed in the Forge® programme, based on the finite element method (FEM). It was found that the adopted rolling scheme and design of wedge tools ensures the achievement of a correctly formed railway axle, free of internal (cracks) and external defects (overlapping, bending). The force parameters determined in the simulations can be used in the design works of the rolling mill guaranteeing the railway axle forming process.

KEYWORDS: cross-wedge rolling, railway axle, FEM

STRESZCZENIE: Przedstawiono symulacje procesu walcowania poprzeczno-klinowego (WPK) osi kolejowej. Przyjęto, że walce ułożone są poziomo, co powinno ułatwić zarówno załadowanie wsadu, jak i wyładowanie odwalcowanego wyrobu. Symulacje wykonano w programie Forge®, bazującym na metodzie elementów skończonych (MES). Stwierdzono, że przyjęty schemat walcowania oraz konstrukcja narzędzi klinowych zapewniają uzyskanie prawidłowo ukształtowanej osi kolejowej, wolnej od wad wewnętrznych (pęknięć) i zewnętrznych (zawalcowań, wygięć). Określone w symulacjach parametry siłowe można wykorzystać w pracach projektowych walcarki zabezpieczającej proces kształtowania osi kolejowych.

SŁOWA KLUCZOWE: walcowanie poprzeczno-klinowe, oś kolejowa, MES

BIBLIOGRAFIA / BIBLIOGRAPHY:

[1] Gronostajski Z., Pater Z., Madej L., et al. “Recent development trends in metal forming”. Arch. Civ. Mech. Eng. 19, 3 (2019): 898–941, https://doi.org/10.1016/j.acme.2019.04.005.

[2] Pater Z. “Cross-Wedge Rolling”. In: S.T. Button, ed. “Comprehensive Materials Processing“. 3 (2014): 211–279, Elsevier Ltd.

[3] Pater Z., Tomczak J. “A new cross wedge rolling process for producing rail axles”. MATEC Web of Conferences. 190 (2018): 11006, https://doi.org/10.1051/matecconf/201819011006.

[4] Bulzak T. “Ductile fracture prediction in cross-wedge rolling of rail axles”. Materials. 14, 21 (2021): 6638, https://doi. org/10.3390/ma14216638.

[5] Pater Z. “Numerical analysis of the cross-wedge rolling process of a railway axle”. Mechanik. 93, 2 (2020): 18–21: https:// doi.org/10.17814/mechanik.2020.2.6.

[6] Hu B., Shu X., Yu P., Peng W. “The strain analysis at the broadening stage of the hollow railway axle by multi-wedge cross wedge rolling”. Applied Mechanics and Materials. 494–495 (2014): 457–460, https://doi.org/10.4028/www.scientific. net/AMM.494-495.457.

[7] Sun B., Zheng X., Shu X., Peng W., Sun P. “Feasibility study on forming hollow axle with multi-wedge synchrostep by cross wedge rolling”. Applied Mechanics and Materials. 201–202 (2012): 673–677, https://doi.org/10.4028/www.scientific. net/AMM.201-202.673.

[8] Peng W., Sheng S., Chiu Y., Shu X., Zhan L. “Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft”. Rare Metal Materials and Engineering. 45, 4 (2016): 836–842, https://doi.org/10.1016/S1875-5372(16)30084-4.

[9] Pater Z. “Study of cross wedge rolling process of BA3002-type railway axle”. Advances in Science and Technology Research Journal. 16, 2 (2022): 225–231, https://doi. org/10.12913/22998624/147310.

[10] Silva M.N.L., Pires G.H., Button S.T. “Damage evolution during cross wedge rolling of steel DIN 38MnSiVS5”. Procedia Engineering. 10 (2011): 752–757, https://doi. org/10.1016/j.proeng.2011.04.125.

[11] Kache H., Stonis M., Behrens B.A. “Development of a warm cross wedge rolling process using FEA and downsized experimental trials”. Prod. Eng. Res. Devel. 6 (2012): 339–348, https://doi.org/10.1007/s11740-012-0379-5.

[12] Meyer M., Stonis M., Behrens B.A. “Cross wedge rolling and bi-directional forging of preforms for crankshafts”. Prod. Eng. Res. Devel. 9 (2015): 61–71, https://doi.org/10.1007/ s11740-014-0581-8.

[13] Behrens B.A., Stonis M., Rasche N. “Influence of the forming angle in cross wedge rolling on the multi-directional forging of crankshafts”. Int. J. Mater. Form. 11 (2018): 31–41, https:// doi.org/10.1007/s12289-016-1326-3.

[14] Pater Z., Tomczak J., Bulzak T. “FEM simulation of the cross-wedge rolling process for a stepped shaft”. Strength of Materials. 49, 4 (2017): 521–527, https://doi.org/10.1007/ s11223-017-9895-z.

[15] Pater Z., Tomczak J., Bulzak T. “An innovative method for forming balls by cross rolling”. Materials. 11 (2018): e1793, 1–14, https://doi.org/10.3390/ma11101793.

[16] Kruse J., Jagodzinski A., Langer J., Stonis M., Behrens B.A. “Investigation of the joining zone displacement of cross-wedge rolled serially arranged hybrid parts”. Int. J. Mater. Form. 13 (2020): 577–589, https://doi.org/10.1007/s12289-019- 01494-3.

[17] Pater Z., Tomczak J., Bulzak T., Wójcik Ł. “Conception of a three roll cross rolling process of hollow rail axles”. ISIJ International. 61, 3 (2021): 895–901, https://doi.org/10.2355/ isijinternational.ISIJINT-2020-530.

DOI: https://doi.org/10.17814/mechanik.2022.5-6.7

 

* Artykuł recenzowany

 

Pobierz plik / download

Zbigniew Pater, Tomasz Bulzak, Janusz Tomczak: Numerical simulation of a cross-wedge rolling process in a mill with horizontally stacked rolls (Symulacja numeryczna procesu walcowania poprzeczno-klinowego osi kolejowej w walcarce z poziomo ułożonymi walcami) (PDF, ~0,7 MB)

Home Page Maj-Czerwiec 2022 Numerical simulation of a cross-wedge rolling process in a mill with horizontally stacked rolls

Recommended Books

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession
Keke Zhang, Xinhao Liao

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession

Cambridge University Press

A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances...

Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications
Wit Grzesik

Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications

Elsevier

In 2017 Elsevier republished the book “Advanced Machining Processes of Metallic Materials: Theory,...

Hybrid Machining: Theory, Methods, and Case Studies
Xichun Luo Yi Qin

Hybrid Machining: Theory, Methods, and Case Studies

Elsevier

“Hybrid Machining: Theory, Methods, and Case Studies” covers the scientific fundamentals, techniques,...

Three-Dimensional Navier-Stokes Equations. Classical Theory
James C. Robinson, José L. Rodrigo, Witold Sadowski

Three-Dimensional Navier-Stokes Equations. Classical Theory

Cambridge University Press

A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier-Stokes...

Our partners