Mechanik
PL FB kontakt

20.04.2024

Home Page Sierpień-Wrzesień 2021 New developments in vibration assisted machining of aerospace materials

New developments in vibration assisted machining of aerospace materials

Nowe osiągnięcia w obróbce materiałów lotniczych wspomaganej drganiami *

Author: Krzysztof Jemielniak

Mechanik nr 08/09/2021 - Obróbka skrawaniem

ABSTRACT: Presented is an update of the recent literature on advances in difficult to machine materials such as nickel and titanium-based alloys, and composites used in aeroengine and aerostructure applications. The review covers ultrasonic vibration-assisted machining and the combination of this technique with minimum quantity lubrication and high-pressure cooling. Also discussed are low-frequency vibration-assisted aerospace alloy drilling and low- and high-frequency vibration-assisted drilling of stacks.

KEYWORDS: aerospace materials, machining, vibrations, UVAM, UVAM&MQL, UVAM&HPC, LF-VAD

STRESZCZENIE: Przedstawiono najnowsze osiągnięcia we wspomaganej drganiami obróbce materiałów trudnoobialnych, takich jak stopy niklu, stopy tytanu oraz kompozyty stosowane w silnikach i konstrukcjach lotniczych. Przegląd obejmuje obróbkę wspomaganą drganiami ultradźwiękowymi oraz połączenie tej techniki ze smarowaniem minimalnym i chłodzeniem pod wysokim ciśnieniem. Omówiono także wiercenie stopów lotniczych wspomagane drganiami o niskiej częstotliwości oraz wiercenie stosów wspomagane drganiami o niskiej i wysokiej częstotliwości.

SŁOWA KLUCZOWE: materiały lotnicze, obróbka skrawaniem, drgania, obróbka wspomagana drganiami ultradźwiękowymi, minimalne smarowanie, wiercenie wspomagane drganiami o niskiej częstotliwości, chłodzenie pod wysokim ciśnieniem

BIBLIOGRAFIA / BIBLIOGRAPHY:

[1] Jemielniak K. “New developments in cooling techniques for machining superalloys” [„Nowe osiągnięcia w technikach chłodzenia przy obróbce superstopów”]. Mechanik. 7 (2021) 6–16, https://doi.org/10.17814/mechanik.2021.7.9.

[2] Chen W., Huo D., Shi Y., Hale J.M. “State-of-the-art review on vibration-assisted milling: principle, system design, and application”. Int J Adv Manuf Technol. 97 (2018): 2033–2049, https://doi.org/10.1007/s00170-018-2073-z.

[3] Zheng L., Chen W., Huo D. “Review of vibration devices for vibration-assisted machining”. Int J Adv Manuf Technol. 108 (2020): 1631–1651, https://doi.org/10.1007/s00170-020-05483-8.

[4] Rinck P.M., Gueray A., Kleinwort R., Zaeh M.F. “Experimental investigations on longitudinal-torsional vibration-assisted milling of Ti-6Al-4V”. Int J Adv Manuf Technol. 108 (2020): 3607–3618, https://doi.org/10.1007/s00170-020-05392-w.

[5] Liu Q., Xu J., Yu H. “Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V”. Int J Adv Manuf Technol. 108 (2020): 2917––2928, https://doi.org/10.1007/s00170-020-05593-3.

[6] Zhu L., Ni C., Yang Z., Liu C. “Investigations of microtextured surface generation mechanism and tribological properties in ultrasonic vibration-assisted milling of Ti-6Al-4V”. Precision Engineering. 57 (2019): 229–243, https://doi.org/10.1016/j.precisioneng.2019.04.010.

[7] Gao J., Jin X. “Effects of Ultrasonic Vibration Assistance on Chip Formation Mechanism in Cutting of Ti–6Al–4V”. J. Manuf. Sci. Eng. 141/12 (2019): 121007, https://doi.org/10.1115/1.4045129.

[8] Bai W., Bisht A., Roy A., Suwas S., Sun R., Silberschmidt V.V. “Improvements of machinability of aerospace-grade Inconel alloys with ultrasonically assisted hybrid machining”. Int J Adv Manuf Technol. 101 (2019): 1143–1156, https://doi.org/10.1007/s00170-018-3012-8.

[9] Liu Y., Liu Z., Wang X., Huang T. “Experimental study on tool wear in ultrasonic vibration–assisted milling of C/SiC composites”. Int J Adv Manuf Technol. 107 (2020): 425–436, https://doi.org/10.1007/s00170-020-05060-z.

[10] Kim J., Bai W., Roy A., Jones L.C.R., Ayvar-Soberanis S., Silberschmidt V.V. Hybrid machining of metal-matrix composite”. Procedia CIRP. 82 (2019): 184–189, https://doi.org/10.1016/j.procir.2019.04.162.

[11] Niu Q., Jing L., Wang C., Li S., Qiu X., Li C., Xiang D. “Study on effect of vibration amplitude on cutting performance of SiCp/Al composites during ultrasonic vibration-assisted milling”. Int J Adv Manuf Technol. 106 (2020): 2219–2225, https://doi.org/10.1007/s00170-019-04796-7.

[12] Hussein R., Sadek A., Elbestawi M.A., Attia M.H. “Elimination of delamination and burr formation using high-frequency vibration-assisted drilling of hybrid CFRP//Ti6Al4V stacked material”. Int J Adv Manuf Technol. 105 (2019): 859–873, https://doi.org/10.1007/s00170-019-04248-2.

[13] Wei L., Wang D. “Comparative study on drilling effect between conventional drilling and ultrasonic-assisted drilling of Ti-6Al-4V/Al2024-T351 laminated material”. Int J Adv Manuf Technol. 103 (2019): 141–152, https://doi.org/10.1007/s00170-019-03507-6.

[14] Yan L., Zhang Q., Yu J. “Effects of continuous minimum quantity lubrication with ultrasonic vibration in turning of titanium alloy”. Int J Adv Manuf Technol. 98 (2018): 827––837, https://doi.org/10.1007/s00170-018-2323-0.

[15] Ni C., Zhu L., Yang Z. “Comparative investigation of tool wear mechanism and corresponding machined surface characterization in feed-direction ultrasonic vibration assisted milling of Ti-6Al-4V from dynamic view”. Wear. 436–437 (2019): 203006, https://doi.org/10.1016/j.wear.2019.203006.

[16] Ni C., Zhu L. “Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology”. Journal of Materials Processing Tech. 278 (2020): 116518, https://doi.org/10.1016/j.jmatprotec.2019.116518.

[17] Lu Z., Zhang D., Zhang X., Peng Z. “Effects of high-pressure coolant on cutting performance of high-speed ultrasonic vibration cutting titanium alloy”. Journal of Materials Processing Tech. 279 (2020): 116584, https://doi.org/10.1016/j.jmatprotec.2019.116584.

[18] Hussein R., Sadek A., Elbestawi M.A., Attia M.H. “Surface and microstructure characterization of low-frequency vibration-assisted drilling of Ti6Al4V”. Int J Adv Manuf Technol. 103 (2019): 1443–1457, https://doi.org/10.1007/s00170-019-03608-2.

[19] Hussein R., Sadek A., Elbestawi M.A., Attia M.H. “Effect of process parameters on chip formation during vibration-assisted drilling of Ti6Al4V”. Int J Adv Manuf Technol. 106 (2020): 1105–1119, https://doi.org/10.1007/s00170-019-04627-9.

[20] Singh M., Dhiman S., Singh H., Berndt C.C. “Optimization of modulation-assisted drilling of Ti-6Al-4V aerospace alloy via response surface method”. Materials and Manufacturing Processes. 35/12 (2020): 1313–1329, https://doi.org/10.1080/10426914.2020.1772487.

[21] Hussein R., Sadek A., Elbestawi M.A., Attia M.H. “Low-frequency vibration-assisted drilling of hybrid CFRP/Ti6Al4V stacked material”. Int J Adv Manuf Technol. 98 (2018): 2801–2817, https://doi.org/10.1007/s00170-018-2410-2.

[22] Xu J., Li C., Chen M., Ren F. “A comparison between vibration assisted and conventional drilling of CFRP/Ti6Al4V stacks”. Materials and Manufacturing Processes. 34/10 (2019): 1182–1193, https://doi.org/10.1080/10426914.2019.1615085.

[23] Hussein R., Sadek A., Elbestawi M.A., Attia M.H. “An investigation into tool wear and hole quality during low-frequency vibration-assisted drilling of CFRP/Ti6Al4V stack”. J. Manuf. Mater. Process. 3 (2019): 63, https://doi.org/10.3390/jmmp3030063.

[24] Yang H., Chen Y., Xu J., Ladonne M., Lonfier J., Fu Y. “Tool wear mechanism in low-frequency vibration-assisted drilling of CFRP/Ti stacks and its individual layer”. Int J Adv Manuf Technol. 104 (2019): 2539–2551, https://doi.org/10.1007/s00170-019-03910-z.

DOI: https://doi.org/10.17814/mechanik.2021.8-9.13

 

* Artykuł recenzowany

 

Pobierz plik / download

Krzysztof Jemielniak: New developments in vibration assisted machining of aerospace materials (Nowe osiągnięcia w obróbce materiałów lotniczych wspomaganej drganiami) (PDF, ~2,7 MB)

Home Page Sierpień-Wrzesień 2021 New developments in vibration assisted machining of aerospace materials

Recommended Books

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession
Keke Zhang, Xinhao Liao

Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession

Cambridge University Press

A systematic account of the theory and modelling of rotating fluids that highlights the remarkable advances...

Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications
Wit Grzesik

Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications

Elsevier

In 2017 Elsevier republished the book “Advanced Machining Processes of Metallic Materials: Theory,...

Hybrid Machining: Theory, Methods, and Case Studies
Xichun Luo Yi Qin

Hybrid Machining: Theory, Methods, and Case Studies

Elsevier

“Hybrid Machining: Theory, Methods, and Case Studies” covers the scientific fundamentals, techniques,...

Three-Dimensional Navier-Stokes Equations. Classical Theory
James C. Robinson, José L. Rodrigo, Witold Sadowski

Three-Dimensional Navier-Stokes Equations. Classical Theory

Cambridge University Press

A rigorous but accessible introduction to the mathematical theory of the three-dimensional Navier-Stokes...

Our partners