
Na rys. 3 pokazano morfologię rowków uzyskaną 
przy różnych wartościach natężenia strumienia mag- 
netycznego – widoczny jest systematyczny wzrost ich 
głębokości i gładkości wraz z natężeniem strumienia 
do 40 mT.

Analiza drgań ściernicy przy szlifowaniu płaskim 
(rys. 4) wykazała, że amplituda podstawowej często-
tliwości (333 Hz) zmniejszyła się o 45,8% przy 20 mT 
i aż o 67,6% przy 80 mT w porównaniu ze szlifowa-
niem bez pola. Tłumienie to wynika z tzw. efektu tłu-
mienia elektromagnetycznego, polegającego na wy-
twarzaniu w przewodzącym kole szlifierskim prądów 
wirowych, które generują przeciwne pole magnetycz-
ne i stabilizują jego ruch.

Zmniejszenie drgań przełożyło się bezpośrednio na 
poprawę jakości powierzchni – chropowatości Sa i Sz 
zmniejszyły się odpowiednio o 71% i 68% przy opty-
malnym natężeniu strumienia 40 mT. Jednocześnie 
nadmierne wzmocnienie indukcji (80 mT) prowadzi-
ło do pojawiania się pojedynczych rys, co wskazuje na 
istnienie wartości granicznej natężenia zapewniające-
go optymalne warunki obróbki.

Podsumowując: zastosowanie pola elektromagne-
tycznego w  procesie ultraprecyzyjnego szlifowania 
monokryształowych nadstopów niklu pozwala jedno-
cześnie zwiększyć efektywność usuwania materiału 
i poprawić jakość powierzchni. 
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Badania przeprowadzono na materiale DD486 –  
monokryształowym nadstopie niklu czwartej gene-
racji – z  wykorzystaniem szlifierki ultraprecyzyjnej 
Moore Nanotech 450 UPL, wyposażonej w  specjalnie 
zaprojektowany układ elektromagnesów. Schemat sta-
nowiska przedstawiono na rys. 1. Wytworzone przez 
dwa elektromagnesy równoległe pole magnetyczne, 
o regulowanej indukcji magnetycznej do 80 mT (mini 
Tesla), obejmowało strefę styku ściernicy diamento-
wej z powierzchnią próbki. W doświadczeniach anali-
zowano zarówno proces szlifowania rowka spiralne-
go, jak i szlifowanie płaskiej powierzchni (rys. 2). 

Szlifowanie ultraprecyzyjne monokryształu stopu niklu  
wspomagane polem elektromagnetycznym

Monokryształowe nadstopy niklu są kluczowymi materiałami dla turbin lotniczych i energetycznych, ze względu na ich 
wyjątkową wytrzymałość i odporność cieplną. Jednocześnie brak granic ziaren powoduje, że należą do materiałów ekstre-
malnie trudnoobrabialnych. Zastosowanie zewnętrznego pola elektromagnetycznego podczas szlifowania ultraprecyzyj-
nego może znacząco poprawić jakość powierzchni i stabilność procesu.
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Rys. 4. Sygnały drgań ściernicy (a) oraz amplituda częstotliwości 
podstawowej w funkcji natężenia strumienia magnetycznego (b)

Rys. 1. Schemat stanowiska do szlifowania ultraprecyzyjnego z  po-
lem elektromagnetycznym

Rys. 2. Schematyczny widok szlifowania rowków spiralnych i  po-
wierzchni płaskich

Rys. 3. Topografia rowka (a) i  przekrój poprzeczny rowków 3,5 mm 
od punktu centralnego przy różnych wartościach indukcji magne-
tycznej (0–80 mT) (b)
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